Answer:
1022.485 Watt
Step-by-step explanation:
resistance, R = 12 ohm
Inductive reactance, XL = 15 ohm
Capacitive reactance, Xc = 10 ohm
Vrms = 120 V
Power is given by
P = Vrms x Irms x CosФ
Where, CosФ is called power factor
CosФ = R / Z
Where Z is the impedance
Irms = Vrms / Z
So,
![P = (\left (V_(rms)^(2)* R \right ))/(Z^(2))](https://img.qammunity.org/2020/formulas/physics/college/5udcsuj6pj34cvs3wmltleom9rycof5f5l.png)
![Z = \sqrt{R^2+\left ( X_(L)-X_(c) \right )^(2)}](https://img.qammunity.org/2020/formulas/physics/college/v6zpgrtgnzgnv4w8dsrkw4o7eekudaf49n.png)
![Z = \sqrt{12^2+\left ( 15-10 \right )^(2)}](https://img.qammunity.org/2020/formulas/physics/college/44pa06r63ldk43ikwlwq80kg8swgq1lrto.png)
Z = 13 ohm
So,
![P = (\left (120^(2)* 12 \right ))/(13^(2))](https://img.qammunity.org/2020/formulas/physics/college/lwsvcooeqrrv60m3jsxy7ltl02einc9hve.png)
P = 1022.485 W
Thus, the power is 1022.485 Watt.