Answer:
38.847 seconds
Step-by-step explanation:
m = Mass
x = Compression of spring
k = Spring Constant
g = Acceleration due to gravity = 9.81 m/s²
![F=mg](https://img.qammunity.org/2020/formulas/physics/high-school/53lyjh5vmjetaopu0fmpsubvfhdk09ivom.png)
From Hooke's law
![F=kx\\\Rightarrow 0.05* 9.81=k(11.25-10)* 10^(-2)\\\Rightarrow k=(0.05* 9.81)/((11.25-10)* 10^(-2))\\\Rightarrow k=39.24\ N/m](https://img.qammunity.org/2020/formulas/physics/college/2rdm2bo0iya1d5jredg1j0nzq2myu1oigh.png)
Additional mass
m = 0.1+0.05 = 0.15 kg
Angular frequency
![\omega=\sqrt{(K)/(m)}\\\Rightarrow \omega=\sqrt{(39.24)/(0.15)}\\\Rightarrow \omega=16.17405\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/x1oawj0usxd3ju406vgexzky9046od3wfy.png)
Time for one oscillation is given by
![T=(2\pi)/(\omega)\\\Rightarrow T=(2\pi)/(16.17405)\\\Rightarrow T=0.38847](https://img.qammunity.org/2020/formulas/physics/college/z1ins2hzjetyi10v7j99cieockuqv6padp.png)
For 100 oscillations
![100* 0.38847=38.847\ s](https://img.qammunity.org/2020/formulas/physics/college/ejpwel1h51b6ax54gk30ifkkm8nmehrhye.png)
The time needed for hundred oscillations is 38.847 seconds