Answer:
![g(x)=3^(3x)+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a268sfxgg70p0gdbx3xuhwzogj442zh73q.png)
The transformation that occurs from
is compression by 3 units horizontally and shift of 4 units upwards.
Explanation:
Given
![f(x)=3^x-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zv6udtc2nf5w4fq1owfrf4pfc0sgxtny29.png)
Translation Rules:
![f(x)\rightarrow f(cx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gz2lq0tq2refqtwvxod0ei9mjfjjj4fdzn.png)
If
the function is compressed
units horizontally.
If
and
the function stretches
units horizontally.
![f(x)\rightarrow f(x)+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1cq3tid39v885wmo0kvzhn48rk183b7dkw.png)
If
the function shifts
units to the up.
If
the function shifts
units to the down.
Applying the rules to
![f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g5as8f90m6mrh9dvzpro2yb3z0msz95zff.png)
Step 1
![f(x)\rightarrow f(3x)](https://img.qammunity.org/2020/formulas/mathematics/college/lro5zbbd2owkde39c0ptevfzqy3a2mtj8e.png)
![f(3x)=3^(3x)-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oag6xd1io7z7xi62o8e5wsoucjkxuygimf.png)
[compressed
units horizontally]
Step 2
![f(3x)\rightarrow f(3x)+4=g(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nq0c9qdur5v4j6fbrzhr7qqx3brk0gzf3y.png)
![f(3x)+4=3^(3x)-2+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/khlndk5t5a26v1fb3sttgbjnf4dv7xng5u.png)
∴
![g(x)=3^(3x)+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a268sfxgg70p0gdbx3xuhwzogj442zh73q.png)
[shifts 4 nits up]
∴ The transformation that occurs from
is compression by 3 units horizontally and shift of 4 units upwards.