Answer:
a)v=5.81 m/s
b)N= 831.77 N
Step-by-step explanation:
Given that
m = 39 kg
r= 2.98 m
T= 416 N
a)
Lets take speed of the boy at the lowest position is v m/s
The radial force Fc
![F_c=(mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/gf46art80okzpm369px6hzo95x9w3ngrbu.png)
The tension in the chain is T
![2T-mg=(mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/8td6z7ipqg32cg05na3aojfedk23u4jni7.png)
Now by putting the values
![2T-mg=(mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/8td6z7ipqg32cg05na3aojfedk23u4jni7.png)
![2* 416-39* 10=(39* v^2)/(2.98)](https://img.qammunity.org/2020/formulas/physics/college/dyag6t05pop1wpysafyt15c0r0yrb44d93.png)
v²=33.77
v=5.81 m/s
b)
Lets take normal force = N
![N-mg=(mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/3ta663ctgos16bracy65dscvkeq30cuy8j.png)
Now by putting the values
![N-mg=(mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/3ta663ctgos16bracy65dscvkeq30cuy8j.png)
![N=mg +(mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/jvzgo8pt4kuz49kwjma2u0oerm2bozchg0.png)
![N=39* 10+(39* 5.81^2)/(2.98)](https://img.qammunity.org/2020/formulas/physics/college/cn6wlig4aplv4gasogidhxiklbpqf6b28c.png)
N= 831.77 N