Answer: 6,8 and 10
Explanation:
To find the length , all we need to find is the distance between each point ,
the formula for calculating distance between two points is given by :
D =
![\sqrt{(x_(2)-x_(1)) ^(2)+(y_(2)-y_(1)) ^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9o5mxgaoxyr42kkznyndqvksiwwdd34dcg.png)
Let the points be :
A ( -5,-1)
B(-5,5)
C(3,-1)
Calculating the length AB , we have
D1 =
![\sqrt{(x_(2)-x_(1)) ^(2)+(y_(2)-y_(1)) ^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9o5mxgaoxyr42kkznyndqvksiwwdd34dcg.png)
D1 =
![\sqrt{(-5+5)^(2)+(5+1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1koq965w62t7bvkgr7isvsjq256frtfmds.png)
D1 =
![√(36)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hj1m9r3lya0dl8qkntjydub3r9oohkdqas.png)
D1= 6
Calculating the length AC , we have
D2 =
![\sqrt{(x_(2)-x_(1)) ^(2)+(y_(2)-y_(1)) ^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9o5mxgaoxyr42kkznyndqvksiwwdd34dcg.png)
D2 =
![\sqrt{(3+5)^(2)+(-1+1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/az224ufuawzhzekpp3r23vtc1lmp504z6s.png)
D2 =
![√(64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d1mev7zdye6d51vrokj1jsy7wluhfimsp2.png)
D2 = 8
Calculating the length BC , we have
D3 =
![\sqrt{(x_(2)-x_(1)) ^(2)+(y_(2)-y_(1)) ^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9o5mxgaoxyr42kkznyndqvksiwwdd34dcg.png)
D3 =
![\sqrt{(3+5)^(2)+(-1-5)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3yovqt7o85u5jlosyof9bcq6ju0w7hhtla.png)
D3 =
![√(100)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pb7xsrkvwpbxerceqcxeqf81a1whbxkg3s.png)
D3 = 10
Therefore ,the length of the sides of the triangle are 6,8 and 10