152k views
2 votes
An electron with kinetic energy 1.40 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 30.0 cm. Find (a) the speed of the electron, (No Response) m/s (b) the magnetic field, (No Response) T (c) the frequency of circling, and (No Response) Hz (d) the period of the motion.

1 Answer

6 votes

Answer:

(a)
v=22.177* 10^(12)\ m.s^(-1)

(b)
B=420.855\ T

(c)
f=11.7647* 10^(14)\ Hz

(d)
T=8.5* 10^(-14)s

Step-by-step explanation:

Given:

Kinetic Energy of an electron,
KE=1.4\ keV=1400\ eV=1400* 1.6* 10^(-19)\ J

radius of the orbit,
r=0.3\ m

we have:

mass of an electron,
m=9.109* 10^(-31)\ kg

charge on an electron,
q=1.6* 10^(-19)\ C

(a)

we know:


KE=(1)/(2) m.v^2


1400* 1.6* 10^(-19)=0.5* (9.109* 10^(-31))* v^2


v=22.177* 10^(12)\ m.s^(-1)

(b)

We also have the relation after the comparison of forces(centripetal and magnetic) on a moving charge in a magnetic field as:


m.v =q.B.r ...........................(1)

where:

B = magnetic field normal to the plane of circulating charge

putting respective values in eq. (1)


(9.109* 10^(-31))* (22.177* 10^(12))=(1.6* 10^(-19))* 0.3* B


B=420.855\ T

(d)

angular speed:


\omega=(v)/(r)


\omega=(22.177* 10^(12))/(0.3)


\omega=73.92* 10^(12)\ rad.s^(-1)

∴Time taken for 1 radian:


t=(1)/(\omega)


t=(1)/(73.92* 10^(12))\ s.rad^(-1)

Now time take for 1 circulation i.e. 2π radians(Time period):


T=2\pi* t


T=2\pi* (1)/(73.92* 10^(12))


T=8.5* 10^(-14)s

(c)

we know frequency :


f=(1)/(T)


f=(1)/(8.5* 10^(-14))


f=11.7647* 10^(14)\ Hz

User Gerhat
by
8.5k points