Answer:
N = 1238
Step-by-step explanation:
It is given that,
Change in current in the toroidal solenoid,
![(dI)/(dt)=0.05\ A/s](https://img.qammunity.org/2020/formulas/physics/college/40wsaeqewchu5furwmx5i9rv8qopjins2k.png)
Induced emf in the solenoid,
![\epsilon=126\ mV=126* 10^(-3)\ V](https://img.qammunity.org/2020/formulas/physics/college/iii8im71q224inoacfdmkwhaewd1yvbk7f.png)
Current in tire, I = 1.4 A
Flux in the solenoid,
![\phi=0.00285\ Wb](https://img.qammunity.org/2020/formulas/physics/college/3tqqcbuutnom8zo2uduivtrokaf8r5g7h8.png)
The induced emf in the solenoid is given by :
![\epsilon=L(dI)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/opnh7za5vx3ny41w5l6ce1elno0pfwzstv.png)
L is the self inductance of the solenoid
.........(1)
The self inductance of solenoid is given by :
............(2)
From equation (1) and (2) :
![(N\phi)/(I)=(\epsilon)/(dI/dt)](https://img.qammunity.org/2020/formulas/physics/college/whosycs7cj9nfjie6fmjqvomkm8fbhh99u.png)
![N=(\epsilon I)/(\phi (dI/dt))](https://img.qammunity.org/2020/formulas/physics/college/wi6ar4br26jotd1dcap80re90xvww38i28.png)
![N=(126* 10^(-3)* 1.4)/(0.00285* 0.05)](https://img.qammunity.org/2020/formulas/physics/college/uenwytujb4qzpvd6iuki9yy3lk2z2936iv.png)
N = 1237.89
or
N = 1238
So, the number of turns in the solenoid is 1238. Hence, this is the required solution.