Answer:
h=18.05 cm
Step-by-step explanation:
Given that
m= 25 kg
K= 1300 N/m
x=26.4 cm
θ= 19.5 ∘
When the block just leave the spring then the speed of block = v m/s
From energy conservation
![(1)/(2)Kx^2=(1)/(2)mv^2](https://img.qammunity.org/2020/formulas/physics/college/2kiz3v4m1acmn5no5t2covxc89pbjkhbzv.png)
![Kx^2=mv^2](https://img.qammunity.org/2020/formulas/physics/college/bolys7uafe2ks7cqsyapzlnalea4ksnfw9.png)
![v=\sqrt{(kx^2)/(m)}](https://img.qammunity.org/2020/formulas/physics/college/rqdviqf1rpxavehwqdwcz4r910e9jlj21c.png)
By putting the values
![v=\sqrt{(kx^2)/(m)}](https://img.qammunity.org/2020/formulas/physics/college/rqdviqf1rpxavehwqdwcz4r910e9jlj21c.png)
![v=\sqrt{(1300* 0.264^2)/(25)}](https://img.qammunity.org/2020/formulas/physics/college/l5m0naappq89xrhd4q6zg2do6g3vvitrg2.png)
v=1.9 m/s
When block reach at the maximum height(h) position then the final speed of the block will be zero.
We know that
![V_f^2=V_i^2-2gh](https://img.qammunity.org/2020/formulas/physics/college/r3nl5325ub5pbcvwxt5w92zm39s29ckzlp.png)
By putting the values
![0^2=1.9^2-2* 10* h](https://img.qammunity.org/2020/formulas/physics/college/qjzmmq2weoxqq4oaydgiam19bn58zm1akp.png)
h=0.1805 m
h=18.05 cm