Answer:
![\mu_x=103\\\sigma_x=2.6](https://img.qammunity.org/2020/formulas/mathematics/college/kur06b7jpqbu89625ktu9uv3p233bn3zjb.png)
Explanation:
For any random variable x,
We know that the mean and the standard deviation of the sampling distribution of the sample mean x is given by :-
![\mu_x=\mu\\\\\sigma_x=(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/xcxzyscj4pn3drn8ww372hegf6teow3yji.png)
, where n = sample size.
= population mean
= population standard deviation equal.
Given : n=25
![\mu=103](https://img.qammunity.org/2020/formulas/mathematics/college/r793dc02f2o8xmjw96jrc9tzfee9edzalb.png)
![\sigma=13](https://img.qammunity.org/2020/formulas/mathematics/college/l7dawgta9omdtmd1z9swjtsabvktmdovfm.png)
Then , the mean and the standard deviation of the sampling distribution of the sample mean x will be :-
![\mu_x=\mu=103\\\\\sigma_x=(\sigma)/(√(n))\\\\=(13)/(√(25))\\\\=(13)/(5)=2.6](https://img.qammunity.org/2020/formulas/mathematics/college/w51t50h9y776fvsfetu8pm33ibejunv1py.png)
Hence, the mean and the standard deviation of the sampling distribution of the sample mean x :
![\mu_x=103\\\sigma_x=2.6](https://img.qammunity.org/2020/formulas/mathematics/college/kur06b7jpqbu89625ktu9uv3p233bn3zjb.png)