Answer: Option 'b' is correct.
Explanation:
Since we have given that
Average age = 25 years
Standard deviation = 2 years
Sample size = 16
So, Null hypothesis :
![H_0:\mu\leq 24](https://img.qammunity.org/2020/formulas/mathematics/college/7d546obq2awvwv5ol9gm1lcbv4l809946q.png)
Alternate hypothesis:
![H_1:\mu>24](https://img.qammunity.org/2020/formulas/mathematics/college/2pufeae6ebz5gvforwq3dm30hxcss9woef.png)
Level of significance = 5% = 0.05
So, test statistic would be
![\frac{\bar{X}-\mu}{(\sigma)/(√(n))}\\\\=(25-24)/((2)/(√(16)))\\\\=(1)/((2)/(4))}\\\\=(1)/(0.5)\\\\=2](https://img.qammunity.org/2020/formulas/mathematics/college/kazk464vp3rspjwan13r73o90lie0qh2dt.png)
Hence, Option 'b' is correct.