Answer: B. 1.679
Explanation:
The standard deviation of the difference between the two means is given by :-
![SD (\overline{x}_1-\overline{x}_2)=\sqrt{(\sigma_1^2)/(n_1)+(\sigma_2^2)/(n_2)}](https://img.qammunity.org/2020/formulas/mathematics/college/xqpxxgbr7s2rxze4jl3iozz05yi99cpmxj.png)
If true population standard deviations are not available , then
we estimate the standard error as
![SE (\overline{x}_1-\overline{x}_2)=\sqrt{(s_1^2)/(n_1)+(s_2^2)/(n_2)}](https://img.qammunity.org/2020/formulas/mathematics/college/oxs54popr5vs5sqt36etb0wogyto0veeo7.png)
Given :
![s_1=5,\ s_2=3\ , n_1=13,\ n_2=10](https://img.qammunity.org/2020/formulas/mathematics/college/g31ozhzpsenxxfg6qrql0bv7818xy45kla.png)
Then , the standard deviation of the difference between the two means will be :-
![SE (\overline{x}_1-\overline{x}_2)=\sqrt{((5)^2)/(13)+((3)^2)/(10)}\\\\=\sqrt{(25)/(13)+(9)/(10)}\\\\=√(1.9231+0.9)\\\\=√(2.8231)=1.680](https://img.qammunity.org/2020/formulas/mathematics/college/on7r940wnzo9se7azm6b8bnk2ep1ad48dq.png)
Hence, the correct answer is B. 1.679