195k views
3 votes
Evaluate the surface integral ModifyingBelow Integral from nothing to nothing Integral from nothing to nothing With Upper S f (x comma y comma z )dS using a parametric description of the surface. f (x comma y comma z )equalsx squared plus y squared​, where S is the hemisphere x squared plus y squared plus z squared equals 36​, for zgreater than or equals0 The value of the surface integral is nothing. ​(Type an exact​ answers, using pi as​ needed.)

User Bersling
by
6.0k points

1 Answer

4 votes

Parameterize
S by


\vec s(u,v)=6\cos u\sin v\,\vec\imath+6\sin u\sin v\,\vec\jmath+6\cos v\,\vec k

with
0\le u\le2\pi and
0\le v\le\frac\pi2. Take a normal vector to
S,


(\partial\vec s)/(\partial v)*(\partial\vec s)/(\partial u)=36\cos u\sin^2v\,\vec\imath+36\sin u\sin^2v\,\vec\jmath+36\cos v\sin v\,\vec k

which has norm


\left\|(\partial\vec s)/(\partial v)*(\partial\vec s)/(\partial u)\right\|=36\sin v

Then the integral of
f(x,y,z)=x^2+y^2 over
S is


\displaystyle\iint_Sx^2+y^2\,\mathrm dS=\iint_S\left((6\cos u\sin v)^2+(6\sin u\sin v)^2\right)\left\|(\partial\vec s)/(\partial v)*(\partial\vec s)/(\partial u)\right\|\,\mathrm du\,\mathrm dv


=\displaystyle36^2\int_0^(\pi/2)\int_0^(2\pi)\sin^3v\,\mathrm du\,\mathrm dv=\boxed{1728\pi}

User Nicole Naumann
by
6.1k points