175k views
4 votes
A 40.0-mL solution contains 0.019 M barium chloride (BaCl2). What is the minimum concentration of sodium sulfate (Na2SO4) required in the solution to produce a barium sulfate (BaSO4) precipitate? The solubility product for barium sulfate is Ksp = 1.1 ✕ 10−10.

1 Answer

2 votes

Answer:

The minimum concentration of sodium sulfate required to producer precipitation is
5.790* 10^(-9) M.

Step-by-step explanation:


BaCl_2\rightarrwo Ba^(2+)+2Cl^-

Concentration of barium chloride=
[BaCl_2]=0.019 M

Concentration of barium ions =
[Ba^(2+)]

1 mol of barium chloride gives 1 mol of barium ions.


[Ba^(2+)]=[BaCl_2]=0.019 M

The solubility product for barium sulfate=
K_(sp) = 1.1* 10^(-10)


BaSO_4\rightleftharpoons Ba^(2+)+SO_4^(2-)

0.019 M S

The expression of solubility product for barium sulfate:


K_(sp)=[Ba^(2+)]* S


K_(sp)=0.019 M* S


S=(1.1* 10^(-10))/(0.019 M)=5.790* 10^(-9) M

The minimum concentration of sulfate ions =
[SO_4^(2-)]=5.790* 10^(-9) M


Na_2SO_4(aq)\rightarrow 2Na^+(aq)+SO_4^(2-)(aq)

1 mole of sulfate ions are proceed form 1 mole of sodium sulfate solution.

Then
5.790* 10^(-9) M sulfate ions will be obtained from:


=1* 5.790* 10^(-9) M=5.790* 10^(-9) M of sodium sulfate

The minimum concentration of sodium sulfate required to producer precipitation is
5.790* 10^(-9) M.

User Valk
by
7.2k points