Answer:
The confidence interval for the population mean μ is
![32.487<\mu <30.313](https://img.qammunity.org/2020/formulas/mathematics/college/20douniyj78c3baklmd4eiwh9fitlm02ce.png)
Explanation:
Given :
Number of weights of newborn girls n=185.
Mean
hg
Standard deviation s=7.5 hg
Use a 95% confidence level i.e. cl=0.95
To find : What is the confidence interval for the population mean μ?
Solution :
Using t-distribution,
The degree of freedom
![DF=n-1=185-1=184](https://img.qammunity.org/2020/formulas/mathematics/college/baqk8hmosol92zyq21jmhjbdbskurn00g2.png)
![\alpha=(1-0.95)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/dys571a2u0vmsp51tu98oduz1zcuajynkw.png)
![\alpha=0.025](https://img.qammunity.org/2020/formulas/mathematics/college/we0h7mp3wyh03xj67xf8lxgz1btzm43i1l.png)
The t critical value is t=1.973.
The confidence interval build is
![CI=\bar{x}\pm(t\cdot (s)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/6rf8jj5t30uadfwjzv0gs4oh95bk5ne7rk.png)
Substitute the values,
![CI=31.4\pm(1.973\cdot (7.5)/(√(185)))](https://img.qammunity.org/2020/formulas/mathematics/college/grgx2j1992zx22lm1pxv54rau6loefku1f.png)
![CI=31.4\pm(1.973\cdot 0.5514)](https://img.qammunity.org/2020/formulas/mathematics/college/r61n7r81ioimghwm7kc71b75tpxqdqmgt5.png)
![CI=31.4\pm(1.087)](https://img.qammunity.org/2020/formulas/mathematics/college/gzq0tlwtyql3skhein9wbs5ywa2rvxqxoy.png)
![31.4+1.087<\mu <31.4-1.087](https://img.qammunity.org/2020/formulas/mathematics/college/hgsd5lt57banh7a7grhk5m975zkd58tzjv.png)
![32.487<\mu<30.313](https://img.qammunity.org/2020/formulas/mathematics/college/bspiwbyrxd2qdrbkizyxe267hsboxtnmlv.png)
Therefore, the confidence interval for the population mean μ is
![32.487<\mu <30.313](https://img.qammunity.org/2020/formulas/mathematics/college/20douniyj78c3baklmd4eiwh9fitlm02ce.png)