Answer:
Rate at which volume of the snowball decreasing = 90.48 cm³/min
Explanation:
![\texttt{Volume of sphere, V =}(4)/(3)\pi r^3=(4)/(3)\pi \left ((D)/(2) \right )^3=(1)/(6)\pi D^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/8bfymiby2eq1cfbhz86gur0410g5rw0gmc.png)
Differentiating with respect to time,
![(dV)/(dt)=(d)/(dt)\left ((1)/(6)\pi D^3 \right )=(1)/(6)\pi * 3D^2(dD)/(dt)\\\\(dV)/(dt)=(1)/(2)\pi D^2(dD)/(dt)](https://img.qammunity.org/2020/formulas/mathematics/high-school/77xjvz2tleua95hqnymi8mz0quu301dv8p.png)
Substituting
D = 12 cm and rate of change of diameter = 0.4 cm/min.
![(dV)/(dt)=(1)/(2)\pi D^2(dD)/(dt)\\\\(dV)/(dt)=(1)/(2)\pi * 12^2* 0.4=90.48cm^3/min](https://img.qammunity.org/2020/formulas/mathematics/high-school/o64sagmrf3gts01f57vif4qnqsutwwzgo3.png)
Rate at which volume of the snowball decreasing = 90.48 cm³/min