Answer:
8.19 Joules
Step-by-step explanation:
m = Mass of ball = 1.3 kg
I = Moment of inertia = 0.075088 kgm²
r = Radius of ball = 0.38 m
v = Linear speed = 3 m/s
Angular speed
![\omega=(v)/(r)](https://img.qammunity.org/2020/formulas/physics/high-school/c3p1nmkcqsy9rjpkwv2i7udlu9ih9y2bd7.png)
The linear and rotational kinetic energy will give us the total kinetic energy
![K=(1)/(2)mv^2+(1)/(2)I\omega^2\\\Rightarrow K=(1)/(2)(mv^2+I\omega^2)\\\Rightarrow K=(1)/(2)\left(mv^2+I\left((v)/(r)\right)^2\right)\\\Rightarrow K=(1)/(2)\left(1.3* 3^2+0.075088* \left((3)/(0.38)\right)^2\right)\\\Rightarrow K=8.19\ J](https://img.qammunity.org/2020/formulas/physics/high-school/l41lbpvw7q0ir5wee4qsjud2t1nfly3ucx.png)
The total kinetic energy of the rolling ball is 8.19 Joules