Answer: (a)theta = 76°
(b). See explanation
Step-by-step explanation:
Since the collision is elastic, we say that there is conservation of momentum and energy.
(a). P(x);
P(ix) = p(fx)
m(n)V(i) = m(¶) V(¶) cos 45° + m(n) V(n) cos theta.
P(y);
P(iy)= p(fy)
0= m(¶} V(¶) sin 45° - m(n) V(n) sin theta
m(¶) V (¶) sin 45° = m(n) V(n) sin theta
Kinetic energy; k(i)= k(f)
1/2 m(n) V(i)^2 = 1/2 m(¶) V(¶)^2 + 1/2 m(n) V(n)^2.
V^2(i) = 4 V(¶)^2 + V(n) ^2 ----(1)
V(i)= 4V(¶) cos 45° + V(n) cos theta ------------------(2).
4V(¶) sin45° = V(n) sin theta ------(3).
Solving the three equations, we have;
Tan theta= 4
Theta= 76°
(b).using the momentum conservation principle that is
Momentum before collision= momentum after collision.
M(1) V(1)+ M(2) V(2) = M'(1) V'(1) + M'(2) V'(2)
4xV(1) + xV(2) = 4x V(1) + xV(2)
Factorising x out;
x[4V(1) + V(2)]= x[4V(1) + V(2)]
Multiply both sides by 1/x
4V(1) + V(2) = 4V(1) + V(2)
4V(1) + V(2)/ 4 = V(1) + V(2)