Answer:
The Maximum value is
![P(x)=2076.227](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1xj64f1k7aeqv941pz0vaahoao5bsqksk5.png)
Explanation:
Given,
(equation-1)
Differentiate above equation with respect to 'x',
--- (equation 2)
Again differentiate above equation with respect to 'x',
------- (equation 3)
From equation-2 we see,
The value of
,
,
.
Now, for maximum or minimum, the first derivative must be 0.
For maximum,
![P''(x)<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ovgxuq82rp7pfjpete2mr25krwrwle1kzw.png)
So,
![P'(x)=-0.0039* x^(2) +0.6x+8 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g5p5exkmlwyu7ric9b29owk0pu54t433ev.png)
Using the quadratic formula, we find the roots of
![x=\frac{-0.6\pm \sqrt{0.6^(2)-4* -0.0039* 8 } }{2* -0.0039}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u5vzibh3lvdgqvgsrg3xqu9b2iefuhg0k1.png)
![x=(-0.6\pm 0.696)/(-0.0078)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yblkyds5uocic1pq65775zbc1dy5z7gtna.png)
or
![x=166.15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4mfysi14mz36meylrxd8q9nsoju7pyctjx.png)
For
,
![P''(x)=(6*-0.0013* -12.3 )+(2* 0.3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8nid8hby7cbpj4wvj4jg1ruhltshulg75f.png)
![P''(x)=0.696>0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2za3zmaygvugjrs9yzvcxx9bsge6c119v7.png)
Which is minimum value at
![x=-12.3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vn0m1f1eay317oj9lff2ffevzwu4dwrcu5.png)
And for
,
![P''(x)=(6*-0.0013* 166.15 )+(2* 0.3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qamtldgy828r6afibhqetd4n0d9kih7nfr.png)
![P''(x)=-0.696< 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/23pvv3hrf95xstzw27igdb3u87rphqi22c.png)
Which is maximum value at
![x=166.15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4mfysi14mz36meylrxd8q9nsoju7pyctjx.png)
Plug
in equation-1,
![P(x)=-0.0013* 166.15^(3) +0.3* 166.15^(2) +8* 166.15-372](https://img.qammunity.org/2020/formulas/mathematics/middle-school/700e0w7ecl94ae4k8rlj3y5qwff4l06kpg.png)
![P(x)=2076.227](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1xj64f1k7aeqv941pz0vaahoao5bsqksk5.png)
So the Maximum value is
![P(x)=2076.227](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1xj64f1k7aeqv941pz0vaahoao5bsqksk5.png)