Answer:
ABCD is a RHOMBUS or a SQUARE.
Explanation:
The coordinates are A(-6, 6), B(-2, 8), C(0, 4), and D(-4, 2).
By DISTANCE FORMULA:
The length of the segment with coordinates X(a,b) and Y(c,d) is given as:
![XY = √((c-a)^2 + (d-b)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vtsac338b7l8s5qh3tul7nwdkdjko0njtf.png)
Now, similarly, the lengths of the segments are:
![AB = √((-2 -(-6))^2 + (8-6)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8f6clsxs1a7e3h00m7ho08g27ukq0n0jsr.png)
![=√((4)^2 + (2)^2) = √(16 + 4) = √(20)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pdq792y7a3hr4jscb3tw5j3li4vn533kfj.png)
⇒ The length of the segment AB = √ 20 units
![BC = √((0 -(-2))^2 + (4-8)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fffibo15wcitu0iau0lhr0n7g1vv5h2wum.png)
![=√((2)^2 + (-4)^2) = √(4 + 16) = √(20)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u7xc6q1s24vd9iu61sv2uxstnneam70xxg.png)
⇒ The length of the segment BC = √ 20 units
![CD = √((0 -(-4))^2 + (2-4)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ki0746uabfwfieirxxvgam21v4jnae552b.png)
![=√((4)^2 + (-2)^2) = √(16 + 4) = √(20)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qv8yj93deirxf6dna24h0hxaico8zazmvg.png)
⇒ The length of the segment CD= √ 20 units
![AD = √((-6 -(-4))^2 + (6-2)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2afmjitrol33npj23z7ffhmvci7l33pk6r.png)
![=√((-2)^2 + (4)^2) = √(4 + 16) = √(20)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c1jalvkbvz5et2q957nl9ghfdwx255lgpx.png)
⇒ The length of the segment AD = √ 20 units
![AC = √((0 -(-6))^2 + (4-6)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dkk8x2bt5q8nbu3ves12f8el3qu302jqrc.png)
![=√((6)^2 + (-2)^2) = √(36 + 4) = √(40)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uoip2uyjkqtykmvi25s14e33fjomdnvxvx.png)
⇒ The length of the diagonal AC = √ 40 units
![BD = √((-2 +4)^2 + (8-2)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/79nqvdm9v8pbqfnv03gfbq0u4vfwdye86m.png)
![=√((2)^2 + (6)^2) = √(36 + 4) = √(40)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vk1jy9ur8v3ij7vlg7a9keiydgd8kemvlr.png)
⇒ The length of the diagonal BD = √ 40 units
Since, here the length of all segments is √ 20 units.
⇒AB = BC = CD = AD = √ 20 units
and Diagonal AC = BD
⇒ ABCD is a RHOMBUS or SQUARE.