Answer:
Option a - Discontinuity at (−4, −3), zero at (−1, 0)
Explanation:
Given : Function
![(x^2+5x+4)/(x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f0yey4ajxaq5ggf3txfp7ahykxjwdtjoj7.png)
To find : What are the discontinuity and zero of the function ?
Solution :
To find the discontinuity for our given function
![(x^2+5x+4)/(x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f0yey4ajxaq5ggf3txfp7ahykxjwdtjoj7.png)
We will equate denominator to 0,
![x+4=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hptyrrcmqb29w9hlgtcyqm5w34g2g3mzb9.png)
![x=-4](https://img.qammunity.org/2020/formulas/mathematics/college/wvzyemwe3v3nwgy07u4gzjvgd9ub6bpwgv.png)
Now we simplify the expression,
![f(x)=(x^2+5x+4)/(x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fvumrt1ec0x5k6jtch0cvf4no510kvz1eh.png)
![f(x)=((x+4)(x+1))/((x+4))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ppvm8o34pudjtkcffdmyafyr5x5tjv3nw.png)
![f(x)=x+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5p755aebcssr4n0gjfilwyrkbcyb6dyb4y.png)
Since the denominator term is cancelled out, so our give function has a removable discontinuity.
Now, we will find value of y by substituting x=-4 in function
.
![f(-4)=-4+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cq1krndla765cx6kh37igyxlv0sx46j414.png)
![f(-4)=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pdvg5ssbqn5tsex498fej8qhew1t6du9ue.png)
The discontinuity of given function is at point (-4,-3) .
For zeros of the function put function equate to zero.
![x+1=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/k7ruxu9wy45rdee3flqyzbfjwnobv1edhr.png)
![x=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/whlztoonow2sjij0bijxz0wnqgda4xeqq1.png)
The zero is at (-1,0).
Therefore, Option a is correct.