Answer: 95% confidence interval would be
![(10.5-(10.78)/(√(N)),10.5+(10.78)/(√(N)))](https://img.qammunity.org/2020/formulas/mathematics/high-school/b8xp26dy0fcj7qj8h02chwexve813qpf50.png)
Explanation:
Since we have given that
Sample mean = 10.5
Sample variance = 5.5
Sample size = N
We need to find the 95% confidence interval for the mean.
z = 1.96
So, the confidence interval would be
![\bar{x}\pm z(\sigma)/(√(n))\\\\=10.5\pm 1.96(5.5)/(√(N))\\\\=(10.5-(10.78)/(√(N)),10.5+(10.78)/(√(N)))](https://img.qammunity.org/2020/formulas/mathematics/high-school/nh9iht5xj6kn1w33z6u345kyg4kijkdn1a.png)
Hence, 95% confidence interval would be
![(10.5-(10.78)/(√(N)),10.5+(10.78)/(√(N)))](https://img.qammunity.org/2020/formulas/mathematics/high-school/b8xp26dy0fcj7qj8h02chwexve813qpf50.png)