335,117 views
23 votes
23 votes
For positive integer n, defined


\rm f(n) = n + \frac{16 + 5n - 3 {n}^(2) }{4n + 3 {n}^(2) } + \frac{32 + n - 3 {n}^(2) }{8n + {3n}^(2) } + \frac{48 - 3n - 3 {n}^(2) }{1 2n+3 {n}^(2) } + \cdots + \frac{25 {n} - 7n^(2) }{7 {n}^(2) }
Then, the value of
\displaystyle\rm\lim_(n \to \infty ) is equal to

User Nyerguds
by
2.3k points

1 Answer

14 votes
14 votes

Following the first term
n, the
k-th term
\left(k\in\{1,2,3,\ldots,n\}\right) in
f(n) is given by


(16k + (9-4k)n - 3n^2)/(4kn + 3n^2)

That is,


k=1 \implies (16 + (9-4)n - 3n^2)/(4n + 3n^2) = (16 + 5n - 3n^2)/(4n + 3n^2)


k=2 \implies (16\cdot2 + (9-8)n - 3n^2)/(4\cdot2n + 3n^2) = (32 + n - 3n^2)/(8n + 3n^2)

and so on, up to


k=n \implies (16n + (9-4n)n - 3n^2)/(4n^2 + 3n^2) = (25n - 7n^2)/(7n^2)

We then have


\displaystyle f(n) = n + \sum_(k=1)^n (16k + (9-4k)n - 3n^2)/(4kn + 3n^2) \\\\ ~~~~~~~ = n + \frac1n \sum_(k=1)^n (16\frac kn + 9)/(4\frac kn + 3) - \frac1n \sum_(k=1)^n (4kn + 3n^2)/(4k + 3n) \\\\ ~~~~~~~ = n + \frac1n \sum_(k=1)^n (16\frac kn + 9)/(4\frac kn + 3)- \frac1n \sum_(k=1)^n n \\\\ ~~~~~~~ = \frac1n \sum_(k=1)^n (16\frac kn + 9)/(4\frac kn + 3)

Now as
n\to\infty, the right side converges to a definite integral.


\displaystyle \lim_(n\to\infty) f(n) = \lim_(n\to\infty) \frac1n \sum_(k=1)^n (16\frac kn + 9)/(4\frac kn + 3) \\\\ ~~~~~~~~~~~~~ \,= \int_0^1 (16x + 9)/(4x + 3) \, dx

Wrap up by substituting
x\mapsto\frac{x-3}4.


\displaystyle \lim_(n\to\infty) f(n) = \frac14 \int_0^1 (16x + 9)/(4x + 3) \, dx \\\\ ~~~~~~~~~~~~~\, = \frac14 \int_3^7 \frac{4x - 3}x \, dx \\\\ ~~~~~~~~~~~~~\, = \frac14 \int_3^7 \left(4 - \frac3x\right) \, dx \\\\ ~~~~~~~~~~~~~\, = \left. \frac14 (4x - 3\ln|x|) \right\vert_3^7\\\\ ~~~~~~~~~~~~~\, = \boxed{4 + \frac34 \ln\left(\frac37\right)}

User HolisticElastic
by
3.2k points