Answer:
Option a. 0.55 m ^3
Explanation:
we know that
If two figures are similar, then the ratio of its volume is equal to the scale factor elevated to the cubic
Let
z ----> the scale factor
x ----> the volume of the model of a grain silo in cubic meters
y ---> the volume of the actual silo in cubic meters
so
![z^(3) =(x)/(y)](https://img.qammunity.org/2020/formulas/mathematics/college/so6umlqzmjqyg2glczmnkzy2sspjpabza9.png)
we have
![z=(1)/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7ldj4803elxyqnmi7z4yw26hvx5fph7zx8.png)
![y=550\ m^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2htqjx2ssijtg6ga5f4kdg26vby8uczp4d.png)
substitute the values
![((1)/(10))^(3) =(x)/(550)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cbgowz85gywwigiy0h5i5ed1p6cr8aqesi.png)
Solve for x
![((1)/(1,000)) =(x)/(550)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/du3umlwuw8pwocuyq9f0vpdbbgt4zhgm6l.png)
![x=((1)/(1,000))550](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ldm2vbbgqzs9gv2t8qwx32fli7ohro6lg3.png)
![x=0.55\ m^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5xzi40mzp6vugzlc0jgqelakb10b96eye1.png)