Answer:
(D) The ordered pair (−4, 0) is a solution to the system because it makes both equations true.
Explanation:
Given:
The system of equations are given as:
![2x+y=-8\\x-y=-4](https://img.qammunity.org/2020/formulas/mathematics/college/9e76nw8h9zksxqha8q1tr0ccwezdib0prp.png)
Let us solve this system using elimination method.
Addin the two equations, we get:
![2x+y+x-y=-8-4\\2x+x=-12\\3x=-12\\x=(-12)/(3)=-4](https://img.qammunity.org/2020/formulas/mathematics/college/8th0yb7zl0h8ymjt4okkkkljz5snhnlase.png)
Now, plug in -4 for
in second equation and solve for
.
![x-y=-4\\-4-y=-4\\-y=-4+4\\y=0](https://img.qammunity.org/2020/formulas/mathematics/college/1jxpukchzg5bsvqois40umfcqstt5rxc3k.png)
Therefore, the solution to the given system of equations is (-4,0).
This means that the point (-4, 0) satisfies both the equations.
This can be verified as shown below:
Plug in -4 for
and 0 for
and check whether the left side equals right side or not.
![2x+y=-8\\2(-4)+0=-8\\-8+0=-8\\-8=-8\\LHS=RHS\\\\x-y=-4\\-4-0=-4\\-4=-4\\LHS=RHS](https://img.qammunity.org/2020/formulas/mathematics/college/ur4vzhg1kzw9jwtjmaxu7hevzx32j8152y.png)
Therefore, the option (D) is correct.