129k views
1 vote
Which statements are true about the ordered pair (−4, 0) and the system of equations? {2x+y=−8x−y=−4 Select each correct answer.

(A) The ordered pair (−4, 0) is a solution to the first equation because it makes the first equation true.
(B) The ordered pair (−4, 0) is a solution to the second equation because it makes the second equation true.
(C) The ordered pair (−4, 0) is not a solution to the system because it makes at least one of the equations false.
(D) The ordered pair (−4, 0) is a solution to the system because it makes both equations true.

1 Answer

5 votes

Answer:

(D) The ordered pair (−4, 0) is a solution to the system because it makes both equations true.

Explanation:

Given:

The system of equations are given as:


2x+y=-8\\x-y=-4

Let us solve this system using elimination method.

Addin the two equations, we get:


2x+y+x-y=-8-4\\2x+x=-12\\3x=-12\\x=(-12)/(3)=-4

Now, plug in -4 for
x in second equation and solve for
y.


x-y=-4\\-4-y=-4\\-y=-4+4\\y=0

Therefore, the solution to the given system of equations is (-4,0).

This means that the point (-4, 0) satisfies both the equations.

This can be verified as shown below:

Plug in -4 for
x and 0 for
y and check whether the left side equals right side or not.


2x+y=-8\\2(-4)+0=-8\\-8+0=-8\\-8=-8\\LHS=RHS\\\\x-y=-4\\-4-0=-4\\-4=-4\\LHS=RHS

Therefore, the option (D) is correct.

User Poujo
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories