187k views
3 votes
Trigonometry - Verify Identity:

cos (x - y) / sin (x + y) = 1 + cotxcoty / cotx + coty

1 Answer

5 votes

Answer:

The proof is given below.

Explanation:

Given:

The identity to verify is given as:


(\cos (x-y))/(\sin (x+y))=(1+\cot x.\cot y)/(\cot x+\ cot y)

Consider the left hand side of the identity.


\because \cos (A-B)=\cos A\cdot \cos B+\sin A\cdot \sin B\\ \sin (A+B)=\sin A\cdot \cos B+\sin B\cdot \cos A


= (\cos (x-y))/(\sin (x+y))\\=(\cos x\cdot \cos y+\sin x\cdot \sin y)/(\sin x\cdot \cos y+\sin y\cdot \cos x)\\

Dividing both numerator and denominator by
\sin x\cdot \sin y. This gives,


=((\cos x\cdot \cos y)/(\sin x\cdot \sin y)+(\sin x\cdot \sin y)/(\sin x\cdot \sin y))/((\sin x\cdot \cos y)/(\sin x\cdot \sin y)+(\sin y\cdot \cos x)/(\sin x\cdot \sin y)) \\\\\\=(\cot x\cdot \cot y+1)/(\cot x+\cot y)\\\\=(1+\cot x.\cot y)/(\cot x+\ cot y)=RHS

We have used the identity
\cot A = (\cos A)/(\sin A) above.

Therefore,


(\cos (x-y))/(\sin (x+y))=(1+\cot x.\cot y)/(\cot x+\ cot y)

Therefore, LHS = RHS and hence proved.

User Ivan Tsirulev
by
8.6k points