144k views
1 vote
Suppose 1.26 g of C2(NO2)6(s) is placed in a 200.0 cm3 vessel where it is detonated.

The heat capacities, Cv, at 25 °C for the gases formed are as follows:
CO2: 28.5 J mol-1 K-1
NO: 21.5 J mol-1 K-1
NO2: 29.5 J mol-1 K-1
Assuming the heat capacities don’t change and all the heat liberated in the reaction remains in the container, what will be the pressure of the mixture of gases after detonation?

1 Answer

0 votes

Step-by-step explanation:

It is given that 1.26 g of
C_(2)(NO_(2))_(6)(s) is placed in a
200.0 cm^(3) vessel.

The balanced equation for the given reaction will be as follows.


C_(2)(NO_(2))_(6)(s) \rightarrow 2NO_(2)(g) + 4NO(g) + 2CO_(2)(g), \Delta H_{rxn}[/tex] = -455.66 kJ

Now,
dH_(rxn) for 1.26g
C_(2)(NO_(2))_(6) will be as follows.


dH_(rxn) = 1.26g C_(2)(NO_2)_6 * ((1 mol C_2(NO_2)_6)/(300.08g) C_2(NO_2)_6) * -451.1 kJ/mol C_2(NO_2)_6)

= -1.895 kJ

Now, we will calculate the moles of
CO_2, NO and [/tex]NO_2[/tex] formed as follows.

  • Moles of
    NO_(2) = 1.26g C_2(NO_2)_6 * ((1 mol C_2(NO_2)_6)/(300.08g C_2(NO_2)_6)) * ((2 mol NO_(2))/(1 mol C_2(NO_2)_6))

= 0.008398 mol
NO_2

  • Moles of NO =
    1.26 g C_2(NO_2)_6 * ((1 mol C_2(NO_2)_6)/(300.08 g C_2(NO_2)_6)) * ((4 mol NO)/(1 mol C_2(NO_2)_6))

= 0.01680 mol NO

  • Moles
    CO_(2) = 1.26 g C_2(NO_2)_6 * ((1 mol C_2(NO_2)_6)/( 300.08 g C_2(NO_2)_6)) * ((2 mol CO_2)/(1 mol C_2(NO_2)_6))

= 0.008398 mol
CO_2

According to energy balance, we assume the same final temperature, assuming we heat the mix to
140^(o)C to make the reaction occur.

Then, calculate heat as follows.

Heat =
(m * C_v * (T_(f) - 140^(o)C) CO_(2) + (m * C_(v) * (T_(f) - 140^(o)C) NO + (m * C_(v) * (T_(f) - 140^(o)C) NO_2

1895 J =
(0.008398 mol NO_2 * 29.5 J/mol^(o)C * (T_(f) - 140^(o)C)) + (0.01680 mol NO * 21.5 J/mol^(o)C * (T_(f) - 140^(o)C)) + (0.008398 mol CO_(2) * 28.5 J/mol^(o)C * (T_(f) - 140^(o)C))

1895 =
0.2477 * (T_(f) - 140) + 0.3611 * (T_(f) - 140) + 0.2393 * (T_(f) - 140)

On rearranging the above equation we will calculate the final temperature as follows.


T_(f) = ((1895)/((0.2477 + 0.3611 + 0.2393))) + 140

=
2374^(o)C

= 2647 K

According to the ideal gas equation, PV = nRT.

So, calculate the pressure as follows.

P =
(nRT)/(V)

=
(0.008398 + 0.01680 + 0.008398) * (0.08206 L atm/mol K) * \frac {2647 K}{0.2000 L}

= 36.5 atm

Thus, we can conclude that the pressure of the mixture of gases after detonation is 36.5 atm.

User SRKX
by
4.7k points