Answer: (17.42, 20.78)
Explanation:
As per given , we have
Sample size : n= 9
years
Population standard deviation is not given , so it follows t-distribution.
Sample standard deviation : s= 1.5 years
Confidence level : 99% or 0.99
Significance level :
![\alpha= 1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/high-school/z74sja0vlfxjt6laa69scg7ax4qdqx69zr.png)
Degree of freedom : df= 8 (∵df =n-1)
Critical value :
![t_c=t_((\alpha/2,\ df))=t_(0.005,\ 8)= 3.355](https://img.qammunity.org/2020/formulas/mathematics/high-school/o7sj0eorzpe7wychiox7rp5lyvo5kbw2kt.png)
The 99% confidence interval for the population mean would be :-
![\overline{x}\pm t_c(s)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/high-school/vch7oetlu19l54nuiq93kxtp0nec7epr4a.png)
![19.1\pm (3.355)(1.5)/(√( 9))\\\\=19.1\pm1.6775\\\\=(19.1-1.6775,\ 19.1+1.6775)\\\\=(17.4225,\ 20.7775)\approx(17.42,\ 20.78)](https://img.qammunity.org/2020/formulas/mathematics/high-school/szidd03r8fghz63m0rdvddweowiw95pe3e.png)
Hence, the 99% confidence interval for the population mean is (17.42, 20.78) .