Answer:
The value of angle A is 43° and
The value of angle B is 2° .
Explanation:
Given as :
A - B = 41° .....1
And , tan A + tan B + tan A tan B = 1
Or, tan A + tan B = 1 - tan A tan B ....2
∵ tan ( A + B ) =

Or, tan ( A + B ) =
(from eq 2)
∴ tan ( A + B ) = 1
A + B =

I.e A + B = 45° ........3
Now, from eq 1 and eq 3
A - B = 41°
A + B = 45°
Or, ( A - B ) + ( A + B ) = 41° + 45°
Or, 2 A = 86°
∴ A =
= 43°
Now, putting the value of angle A in eq 1
I.e A - B = 41°
Or, B = 43° - 41° = 2°
Hence The value of angle A is 43° and The value of angle B is 2° . Answer