For this case we have the following equation:
![\frac {5} {9} (g + 18) = \frac {1} {6} g + 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p6rk11qajnwjquyooi2ohpzpprqayjlil8.png)
Applying distributive property on the left side of the equation we have:
![\frac {5} {9} g + \frac {5 * 18} {9} = \frac {1} {6} g + 3\\\frac {5} {9} g + \frac {90} {9} = \frac {1} {6} g + 3\\\frac {5} {9} g + 10 = \frac {1} {6} g + 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zy1vu6sckz16j6rl6mpbcv6sv3lphpm3jc.png)
Subtracting
to both sides of the equation:
![\frac {5} {9} g- \frac {1} {6} + 10 = 3\\\frac {6 * 5-9 * 1} {9 * 6} g + 10 = 3\\\frac {30-9} {54} g + 10 = 3\\\frac {21} {54} g + 10 = 3\\\frac {7} {18} g + 10 = 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lvu5ys2pg1e6nnlblc40il9cm6887b5fqz.png)
Subtracting 10 to both sides of the equation:
![\frac {7} {18} g = 3-10\\\frac {7} {18} g = -7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mnrif315a1pz744m2q1767o05yd2v2gd8e.png)
Multiplying by 18 on both sides:
![7g = -7 * 18\\7g = -126](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ebsknbzgwq9i1uavc5oejgvf272sl9l0x0.png)
Dividing between 7 on both sides:
![g = \frac {-126} {7}\\g = -18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vutpf6vpw40kmdf89qgxwtfx43nuuaqd9b.png)
Thus, the value of g is -18.
ANswer:
![g = -18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/464b13knfet4p9yttm8vpztnrszkom3005.png)