Answer:
The point that divides the line AB in the ration 2 : 1 is
![C(-2,2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bj38yll748m3wrtkn4jucursmgpag20651.png)
Explanation:
Given:
Point
and point
![B(10, -2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7gq2mrbt76j9teqefaf91ek84j6ulgpucm.png)
Point
lies in between of AB such that
![AC : CB = 2 : 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/adytpiu0dy3aiftr1sw1yq1muxunsnvz8i.png)
Using section formula which says that, when a point P divided a line AB in the ratio
, then the co-ordinates of the point P are:
![x=(mx_2+nx_1)/(m+n)\\y=(my_2+ny_1)/(m+n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yq5q1dj97d6hxv1untsendbbmanulmyuyv.png)
Here,
![(x_1,y_1)=(-8,4),(x_2,y_2)=(10,-2),m=2,n=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iluupx8pzd5guz2yqir9x9dj91ytx1vy45.png)
Therefore, the
and
values of point C are:
![x=(1* 10+2* -8)/(2+1)=(10-16)/(3)=(-6)/(3)=-2\\y=(1* -2+2* 4)/(2+1)=(-2+8)/(3)=(6)/(3)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yzsuncjcdrg6bvilh15ku8vc896vxx87n5.png)
Therefore, the point that divides the line AB in the ration 2 : 1 is
![C(-2,2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bj38yll748m3wrtkn4jucursmgpag20651.png)