Answer:
![A=37.5\ units^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w3vtyeho1a1d82l7snmqjmjcnpckzi179i.png)
Explanation:
we know that
The area of a trapezoid is equal to
![A=(1)/(2)[b1+b2]h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/da0hh07kkzujp0a82a1npjqi8kt6ssbabh.png)
where
b1 and b2 are the parallel bases
h is the height of trapezoid (perpendicular distance between the two parallel bases)
In this problem the area is equal to
![A=(1)/(2)[BC+AD]AB](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j2nutjermkndbdy1m3wacxfuvfjpr2t0kk.png)
we have the coordinates
![A(-3,2),B(1,5),C(7,-3),D(0,-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xbgsavkx3yxveugww6db1sxjitrw1ne11x.png)
the formula to calculate the distance between two points is equal to
step 1
Find the distance AB
![A(-3,2),B(1,5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z6k05ezqeahpi9wflz4r3ya872tuvhu4kt.png)
substitute in the formula
step 2
Find the distance BC
![B(1,5),C(7,-3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nclwg3novuqztczrscnzf63he535w8r0e1.png)
substitute in the formula
step 3
Find the distance AD
![A(-3,2),D(0,-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ytmelkfi7zg6qtdkwqnyz3i82q9vbmvm1e.png)
substitute in the formula
step 4
Find the area
![A=(1)/(2)[BC+AD]AB](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j2nutjermkndbdy1m3wacxfuvfjpr2t0kk.png)
substitute the values
![A=(1)/(2)[10+5]5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zatraqbdbl1forh2syyc7f0ps0zkr9iwwe.png)
![A=37.5\ units^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w3vtyeho1a1d82l7snmqjmjcnpckzi179i.png)