12.3k views
0 votes
Helpppp!!!!!!!!!!!!!​

Helpppp!!!!!!!!!!!!!​-example-1
User Hink
by
5.2k points

1 Answer

3 votes

Answer:


A=37.5\ units^2

Explanation:

we know that

The area of a trapezoid is equal to


A=(1)/(2)[b1+b2]h

where

b1 and b2 are the parallel bases

h is the height of trapezoid (perpendicular distance between the two parallel bases)

In this problem the area is equal to


A=(1)/(2)[BC+AD]AB

we have the coordinates


A(-3,2),B(1,5),C(7,-3),D(0,-2)

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

step 1

Find the distance AB


A(-3,2),B(1,5

substitute in the formula


d=\sqrt{(5-2)^(2)+(1+3)^(2)}


d=\sqrt{(3)^(2)+(4)^(2)}


d_A_B=5\ units

step 2

Find the distance BC


B(1,5),C(7,-3)

substitute in the formula


d=\sqrt{(-3-5)^(2)+(7-1)^(2)}


d=\sqrt{(-8)^(2)+(6)^(2)}


d_B_C=10\ units

step 3

Find the distance AD


A(-3,2),D(0,-2)

substitute in the formula


d=\sqrt{(-2-2)^(2)+(0+3)^(2)}


d=\sqrt{(-4)^(2)+(3)^(2)}


d_A_D=5\ units

step 4

Find the area


A=(1)/(2)[BC+AD]AB

substitute the values


A=(1)/(2)[10+5]5


A=37.5\ units^2

User Mohamed Hassan
by
5.8k points