Answer:
x+2 is a factor of
![f(x) = 5x^2 + 13x + 6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cvymr364o4idiashkdleka1qh05i9g9ge5.png)
Explanation:
To check: If (x+2) is a a factor of the polynomial
![f(x) = 5x^2 + 13x + 6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cvymr364o4idiashkdleka1qh05i9g9ge5.png)
We need to check if x = -2 is the FACTOR of the given polynomial.
⇒ To show: f (-2) = 0
Now
![f(-2) = 5(-2)^2 + 13(-2) + 6\\=5(4) -26 + 6\\= 20 + 6 - 26\\= 26 - 26 = 0\\\implies f(-2) = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a9xcixuaq1w1fojtn8gm87fas4m0ee3o0z.png)
Since, f(-2) = 0
⇒ -2 is the ROOT of the Polynomial f(x).
⇒(x +2) is the factor of the given polynomial.
Hence, x+2 is a factor of
![f(x) = 5x^2 + 13x + 6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cvymr364o4idiashkdleka1qh05i9g9ge5.png)