Answer:
![0.2461<\sigma^2<1.5511](https://img.qammunity.org/2020/formulas/mathematics/college/12gx4bwbtzwdck0sm05okk9aj2nqpck45z.png)
Explanation:
Given : A company produces a women's bowling ball that is supposed to weigh exactly 14 pounds.
Sample size : n=11
Degree of freedom =n-1=10
Sample standard deviation : s= 0.71 pounds
Significance level for 95% confidence interval :
![\alpha=1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/4d93854tdh8vyqqac8zw25nhdokllaz78c.png)
We assume that the bowling ball weight is normally distributed.
Using chi-square distribution table, the required critical values are :-
![\chi^2_(df, \alpha/2)=20.48](https://img.qammunity.org/2020/formulas/mathematics/college/b56caepxta4vnqz4er57ff50xm5ku9nwqp.png)
![\chi^2_(df, 1-\alpha/2)=3.25](https://img.qammunity.org/2020/formulas/mathematics/college/zj1nvql52nt0k3yknq1drye1eqo06ol4m7.png)
Then, the 95% confidence interval for the variance of the bowling ball weight will be :
![(s^2(n-1))/(\chi_(\alpha/2))<\sigma^2<(s^2(n-1))/(\chi_(1-\alpha/2))](https://img.qammunity.org/2020/formulas/mathematics/college/14c6hxp2ge4gpmld1w3cfakbx9pvhkdsvv.png)
![=((0.71)^2(10))/(20.48)<\sigma^2<((0.71)^2(10))/(3.25)\\\\=0.2461<\sigma^2<1.5511](https://img.qammunity.org/2020/formulas/mathematics/college/k3ttts41yt6s9w9lsh2xu259qvc4yz6i36.png)
∴ The 95% confidence interval for the variance of the bowling ball weight will be :
![0.2461<\sigma^2<1.5511](https://img.qammunity.org/2020/formulas/mathematics/college/12gx4bwbtzwdck0sm05okk9aj2nqpck45z.png)