Answer:
a. 1.3510 b. 88.02% c. 80.14%
Step-by-step explanation:
Pressure Ratio= 15
Adiabatic Efficiency (ηad)= 0.88
Incoming Temperature= 320K
Incoming Pressure= 135KPa
Compressor with 9 stages with P10/P1= 15
a. (P2/P1) x (P3/P2) x (P4/P3) x (P5/P4) x (P6/P5) x (P7/P6) x (P8/P7) x (P9/P8) x (P10/P9) = 15
same Pressure Ratio (Rp)
(Rp)^9 = 15
Rp= (15)^(1/9) = 1.3510
c. (1/ηpc) = [{ln((P2/P1)^((k-1)/k)) - 1)/ηad + 1}/{ln((P2/P1)^((k-1)/k))}]
where k= 1.4
((P2/P1)^((k-1)/k))= (1.3510)^(0.4/1.4) = 1.08975
(1/ηpc) = [ln{((1.08475-1)/0.88) + 1}]/[ln((P2/P1)^((k-1)/k))]
(1/ηpc) = 0.0970648/0.077794
ηpc= 0.8014 = 80.14%
b. T₂/T₁ = (P2/P1)^((k-1)/k) = 1.08975
T₂= 348.704 K
ηad = T₂ - T₁/ Ti₂ - T₁
0.88= 348.704 - 320/ Ti₂ - 320
Ti₂= 352.613 K
Efficiency of stage η = {(Rp)^((r-1)/r)) - 1}/{(Ti₂/T1) - 1}
η= (1.3510)^((0.4/1.4)) - 1/((352.613/320) - 1)
η= 0.0897/0.1019= 0.8802
ηstage= 88.02 %