Answer:
Answer:
1.1 x 10^9 ohm metre
Step-by-step explanation:
diameter = 1.5 mm
length, l = 5 cm
Potential difference, V = 9 V
current, i = 230 micro Ampere = 230 x 10^-6 A
radius, r = diameter / 2 = 1.5 / 2 = 0.75 x 10^-3 m
Let the resistivity is ρ.
Area of crossection
A = πr² = 3.14 x 0.75 x 0.75 x 10^-6 = 1.766 x 10^-6 m^2
Use Ohm's law to find the value of resistance
V = i x R
9 = 230 x 10^-6 x R
R = 39130.4 ohm
Use the formula for the resistance



ρ = 1.1 x 10^9 ohm metre
Step-by-step explanation: