Answer:
D is the correct representation.
=
![{((3x+4))/(2(x-1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sa1eg2qosxrby6yz7rj9h7tbw1g3lywzgo.png)
Explanation:
Here, the given equation is:
![((4x^2 + 2x)/(x^(2)+x-2) )/( (8x^2 +4x)/(3x^2 +10x+8) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kdff3d7y61wwm7mtregjtyr0i4ygy92kxu.png)
here, numerator =
![{(4x^2 + 2x)/(x^(2)+x-2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cpz41pitheadq7vfou5op1q7jkyuert20l.png)
and denominator =
![(8x^2 +4x)/(3x^2 +10x+8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/un4rm9rdknvwtir81tcuchpocrik1k0qk5.png)
Solving numerator and denominator separately, we get
NUMERATOR:
![{(4x^2 + 2x)/(x^(2)+x-2) } \implies(2x(2x +1))/(x^(2) + 2x-x-2 ) \\\implies(2x(2x +1))/((x+2)(x-1) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t7mw9vrc94ry5pvp5h23esxuo21oxv57v1.png)
Denominator:
![(8x^2 +4x)/(3x^2 +10x+8) = (4x(2x+1))/(3x^2 +6x+ 4x+8)\\ \implies (4x(2x+1))/(3x(x+2)+ 4(x+2)) = (4x(2x+1))/((3x+4)(x+2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jgj939zpt8hrxoq4xk5qx7uxtlnil7dz73.png)
Hence, the transformed fraction is:
![((2x(2x +1))/((x+2)(x-1) ))/((4x(2x+1))/((3x+4)(x+2))) = {(2x(2x +1))/((x+2)(x-1) )} *{((3x+4)(x+2))/(4x(2x+1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o7a0drjpbjmmce23sk0513xfg4871db0wo.png)
or, implied fraction is
![{((3x+4))/(2(x-1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sa1eg2qosxrby6yz7rj9h7tbw1g3lywzgo.png)
Hence, D is the correct representation.