11.0k views
3 votes
The data below are a variation of the data presented in Exercise 12-4 Age (X) 50 34 12 36 18 6.20 1.40 6.05 3.30 8.05 (a) Calculate the correlation coefficient by hand. Use formula (12.1) on page 488. (A negative value should be indicated by a minus sign. Round your final answer to 3 decimal places). calc

1 Answer

5 votes

Answer:

- 0.352

Explanation:

Data provided in the question:

Age (X) 50 34 12 36 18

(Y) 6.20 1.40 6.05 3.30 8.05

Now,

correlation coefficient, r =
(\sum((X-My)(Y-Mx)))/(√(((SSx)(SSy))))

Here,

∑(X - Mx)² = SSx

∑(Y - My)² = SSy

Mx: Mean of X Values =
(50+34+12+36+18)/(5) = 30

My: Mean of Y Values =
(6.20+1.40+6.05+3.30+8.05)/(5) = 5

X - Mx & Y - My: Deviation scores

(X - Mx)² & (Y - My)²: Deviation Squared

(X - Mx)(Y - My): Product of Deviation Scores

Thus,

( X - Mx ) ( Y - My ) (X - Mx)² (Y - My)² (X - Mx)(Y - My)

20.0 1.20 400.0 1.44 24.0

4.0 -3.60 16.0 12.96 -14.4

- 18.0 1.05 324.0 1.102 -18.9

6.0 -1.70 36.0 2.89 -10.2

- 12.0 3.05 144.0 9.303 -36.6

-------------------------------------------------------------------------------------------------------

∑(X - Mx)² = 920.0

∑(Y - My)² = 27.695

∑(X - Mx)(Y - My) = -56.1

thus,

r =
(-56.1)/(√(((920)(27.695))))

or

r = - 0.352

User Aashanand
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.