145k views
4 votes
Solve the given matrix equation for X. Simplify your answers as much as possible. (In the words of Albert Einstein, "Everything should be made as simple as possible, but not simpler.") Assume that all matrices are invertible. ABXA−1B−1 = I + A

1 Answer

6 votes

Answer:


X=B^(-1)A^(-1)BA+A

Explanation:

We are given that a matrix equation


ABXA^(-1)B^(-1)=I+A

We have to solve the given matrix equation for X.

Suppose all matrix are invertible.

Left multiply by
B^(-1)A^(-1) on both sides then ,we get


B^(-1)A^(-1)ABXA^(-1)B^(-1)=B^(-1)A^(-1)(I+A)


B^(-1)BXA^(-1)B^(-1)=B^(-1)A^(-1)+B^(-1)A^(-1)A


AA^(-1)=A^(-1)A=I
When A is invertible.


XA^(-1)B^(-1)=B^(-1)A^(-1)+B^(-1) (
B^(-1)B=BB^(-1)=I)

Right multiply by BA on both sides then we get


XA^(-1)B^(-1)BA=B^(-1)A^(-1)BA+B^(-1)BA


XA^(-1)A=B^(-1)A^(-1)BA+A


XI=B^(-1)A^(-1)BA+A


X=B^(-1)A^(-1)BA+A
(XI=X)

User Dplass
by
6.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.