86.1k views
4 votes
Write a compound inequality to represent all of the numbers between -4 and 6.
PLEASE help

User Mindtonic
by
7.4k points

2 Answers

1 vote

Answer:

A compound inequality is when it has two inequality sings. This is used to represent intervals, a set of number between two limits. In this case, we need to represent a set of numbers between -4 and 6. It's important to consider that "between" means that -4 and 6 are not included, so we want to represent all numbers more than -4 and less than 6.

So, the first part "all numbers more than -4" can be represented in two ways: x > -4 or -4 < x, both ways represents the same thing, but in this case we are gonna use -4 < x, because it's a compound inequality, where the "x" is always in the middle.

On the other hand, we have "less than 6", this can be also represented in two ways: x < 6 or 6 > x. Now, we need to use the first expression, because to form the compound inequality we need the right side limit.

Therefore, the final compound inequality would be:

-4 < x < 6

Just remember, a compound inequality has a right side limit, and a left side limit. So, in this case the expression is saying considering all numbers between -4 and 6.

Now, we just need to apply an operator that indicates that the compound inequality is for all numbers between those limits. That universal operator is
\forall.

At last, the final expression would be:


\forall x:-4 < x < 6.

User Roman Slyepko
by
8.1k points
3 votes

Answer:

The compound inequality to represent all numbers between -4 and 6 is,

represented by the set A = -4 ≤ x ≤ 6

Explanation:

The compound inequality to represent all numbers between -4 and 6 is,

represented by the set A = -4 ≤ x ≤ 6.

The above inequality is compound since it involves 2 '≤' symbol.

User Sisu
by
7.9k points

No related questions found