Answer:
Given below
Explanation:
Given that population mean = 1500 and population std dev σ = 3.0.
Since sigma is known, we can use z critical values for finding out confidence intervals
a) 95% CI for μ when N = 25 and sample mean = 58.3
=
![(58.3-1.96((3)/(√(25) ) ,58.3+1.96((3)/(√(25) ))\\= (58.3-1.176, 58.3+1.176)\\= (57.124, 59.476)](https://img.qammunity.org/2020/formulas/mathematics/college/k622gv0tfnxue14x900riemxxi29bsnxbo.png)
b) a 95% CI for μ when N = 100 and sample mean = 58.3.
=
![(58.3-1.96((3)/(√(100) ) ,58.3+1.96((3)/(√(100) ))\\= (58.3-0.588, 58.3+0.588)\\= (56.712, 58.588)\\](https://img.qammunity.org/2020/formulas/mathematics/college/1toe8l1mn8daddxbrezkh6e9l0qke4pmnb.png)
c) a 99% CI for μ when N = 100 and sample mean = 58.3.
=
![(58.3-2.58((3)/(√(100) ) ,58.3+2.58((3)/(√(100) ))\\= (58.3-0.774, 58.3+0.774)\\= (57.526, 59.074)](https://img.qammunity.org/2020/formulas/mathematics/college/fjn1hcuxcest9uipf5rgupkb96a1f4rmbe.png)
d) a 82% CI for μ when N = 100 and sample mean = 58.3.
=
![(58.3-1.33((3)/(√(100) ) ,58.3+1.33((3)/(√(100) ))\\= (58.3-0.399 58.3+0.399)\\= (57.9.1, 58.699)](https://img.qammunity.org/2020/formulas/mathematics/college/hbp3xw59aj3lcso47k9f55m5t99vocvjt6.png)
e)
![1=2.58((3)/(√(n) ) )\\√(n) =7.74\\n=59.9176](https://img.qammunity.org/2020/formulas/mathematics/college/67a5wnhplxmcg1ti58fez4b12gapkx4g30.png)
n =60