8.1k views
5 votes
Directions: Verify whether the identity is true while only working on one side of the equation.

1 - 2sin^2(x) = 2cos^2(x) - 1

User Marc Ster
by
5.4k points

1 Answer

3 votes

Answer:

Proved that
1 - 2\sin ^(2)x = 2\cos ^(2) x - 1.

Explanation:

We know the following identity as
\sin ^(2) x + \cos ^(2) x =1 .......... (1) and we commonly use this identity as a formula.

Now, rearranging the identity we get


\sin ^(2)x = 1 - \cos ^(2) x


2\sin ^(2)x = 2 - 2\cos ^(2) x


- 2\sin ^(2)x = 2\cos ^(2) x - 2


1 - 2\sin ^(2)x = 1 + 2\cos ^(2) x - 2


1 - 2\sin ^(2)x = 2\cos ^(2) x - 1

Hence, proved that
1 - 2\sin ^(2)x = 2\cos ^(2) x - 1. (Answer)

User Resgh
by
6.2k points