Answer:
Length=82
width= 46
Explanation:
Given:
Area of Rectangle}= 3772
Perimeter of Rectangle=256
![\textrm{Formula of Perimeter of rectangle} = 2(length+width)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7qhmc1n6wm8vpj3noesviuttxxipfv40wv.png)
Substituting the values we get:
![2(l+b)=256\\l+b=(256)/(2)\\l+b=128\\l=128-b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q9dskxt47oq07lcjupumamu3mhbxjb5abc.png)
Now
![\textrm{Formula of Area of rectangle}= length* width](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qr38ov6m1vkvku6u9ll2vuo786pxmu1adm.png)
Substituting the values we get:
![l * b= 3772](https://img.qammunity.org/2020/formulas/mathematics/middle-school/13byvffye7618tgk3nltwhlw22lej9fqs7.png)
Now from above equation derived for length we will substitute value of l in the above equation we will get.
![b(128-b)=3772\\128b-b^(2) =3772\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hyf4l9ua9lcwe1lpeznanuxqnsb6488sst.png)
Now taking left hand side to right handside we get
![b^(2) -128b+3772=0\\b^(2)-46b-82b+3772=0\\b(b-46)-82(b-46)=0\\(b-46)(b-82)=0\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/32qo4zb5l986kzmtmx5rv4srittvppr1ex.png)
Now solving for both equation we get.
![b-46=0 \\ b=46](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ohc8c4rszvuug9szfpabb14w387esd9sxz.png)
![b-82=0\\b=82](https://img.qammunity.org/2020/formulas/mathematics/middle-school/txmyfd7sv92kbepuop29rtkf2s7anznst9.png)
from above we can conclude that
length=82
width=46