164k views
0 votes
#2 - simplify radical using the exponent rule. Show work

#2 - simplify radical using the exponent rule. Show work-example-1

1 Answer

6 votes

Answer:


\frac{1}{5x^{(31)/(6) } }

1 / (5x^(31/6)) if its hard to see

Explanation:


\frac{\sqrt[3]{x} √(x^5) }{√(25x^1^6)}

rewrite top roots:


\frac{x^{(1)/(3) } x^{(5)/(2) } }{√(25x^1^6) }

simplify denominator:


\frac{x^{(1)/(3) } x^{(5)/(2) } }{5x^8}

least common denominator is 6, give all exponents a denominator of 6:


\frac{x^{(2)/(6) } x^{(15)/(6) } }{5x^{(48)/(6) } }

add top exponents:


\frac{x^{(17)/(6) } }{5x^{(48)/(6) } }

subtract top exponent from bottom:


\frac{1}{5x^{(31)/(6) } }

User Sire
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.