482,032 views
36 votes
36 votes
Ans : 27.......................


\frac{(243 {)}^(2n/5) . {3}^(2n + 1) }{ {9}^(n + 1). {3}^(2(n - 2)) } \\

please give step by step explanation...


User Katelyn Gadd
by
2.5k points

2 Answers

22 votes
22 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Here we go ~


\qquad \sf  \dashrightarrow \: \frac{((243 {)}^(2n/5) ) \sdot( {3}^(2n + 1)) }{ ({9}^(n + 1)) \sdot( {3}^(2(n - 2)) )}


\qquad \sf  \dashrightarrow \: \frac{(3{)}^(5(2n/5)) ) \sdot( {3}^(2n + 1)) }{ ({3 }^(2(n + 1))) \sdot( {3}^(2(n - 2)) )}


\qquad \sf  \dashrightarrow \: \frac{(3{)}^(2n) \sdot( {3}^(2n + 1)) }{ ({3 }^((2n + 2))) \sdot( {3}^((2n - 4)) )}

let's break it up :


  • \sf  3 {}^(2n) = (3 {}^(2n -4) ) \sdot(3 {}^(4) )

  • \sf  3 {}^((2n + 1)) = (3 {}^(2n -4) ) \sdot(3 {}^(5) )

  • \sf  3 {}^((2n + 2)) = (3 {}^(2n -4) ) \sdot(3 {}^(6) )

now let's take
{ \sf {3}^((2n-4))} common here ~


\qquad \sf  \dashrightarrow \: \frac{(3{)}^((2n - 4)) (3 {}^(4) \sdot{3}^(5)) }{ {(3 )}^((2n - 4))(3 {}^(6) \sdot1)}


\qquad \sf  \dashrightarrow \: \frac{{} (3 {}^(4) \sdot{3}^(5)) }{ (3 {}^(6) \sdot1)}


\qquad \sf  \dashrightarrow \: \frac{{} 3 {}^(9) }{ 3 {}^(6) }


\qquad \sf  \dashrightarrow \: 3 {}^(3)


\qquad \sf  \dashrightarrow \: 27

User Justyna MK
by
2.9k points
16 votes
16 votes

Answer:

  • 27

Explanation:


\sf \cfrac{243^{(2n)/(5)}\cdot \:3^(2n+1)}{9^(n+1)\cdot \:3^(2\left(n-2\right))}


\sf 9^(n+1)\cdot \:3^(2\left(n-2\right))

Simplify:-


  • \sf 3^(4n-2)


\sf \cfrac{3^(2n)\cdot \:3^(2n+1)}{\boxed{\bf 3^(4n-2)}}

Now, Factor:-


  • \sf 243^{(2n)/(5)}

  • = \boxed{\bf 3^(2n)}


\sf \cfrac{3^(2n)\cdot \:3^(2n+1)}{3^(4n-2)}

Now, let's simplify:-


  • \sf \cfrac{3^(2n)}{3^(4n-2)}

  • =\boxed{\bf 3^(-2n+2)}

  • \sf 3^(-2n+2)\cdot \:3^(2n+1)

Simplify:-


  • \sf 3^(-2n+2)\cdot \:3^(2n+1)

Apply the exponent rule:-


  • \sf 3^(-2n+2+2n+1)

  • \sf 3^3

  • \sf 27

Therefore, your answer is 27.

______________________

Hope this helps!

Have a great day!

User Countingstuff
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.