Answer:
![(\partial T(t))/(\partial y) at\ y = 0\ is \ 1170 K/m](https://img.qammunity.org/2020/formulas/physics/college/f0w53zhrkxh91moddtrrbkgpdfwldelto6.png)
Step-by-step explanation:
we know that biot number is given as
![Bi = (hLc)/(k)](https://img.qammunity.org/2020/formulas/physics/college/xb78jwmrca73mkgdc8sb812jmxdo8unpvi.png)
where Lc is characteristics length
![Lc = (v)/(A) = (LA)/(2A) =\frac[5}{2} = 2.5 mm](https://img.qammunity.org/2020/formulas/physics/college/s2d6v2lqn7spejnqtdeq0d96winqkopgxf.png)
![bI = (80* 2.5* 10^(-3))/(21) = 0.00952](https://img.qammunity.org/2020/formulas/physics/college/2xukgkqpzq3i2zzjel2x5zp8peg9m78iqr.png)
as biot number is less than 0.1 thus apply lumper analysis to find time constant t
![b =(hA)/(\rho V Cp) = (h)/(\rho Lc Cp)](https://img.qammunity.org/2020/formulas/physics/college/j2xnyzi38y6yitkfr6evjrqb0z74yoj9b6.png)
![b = ( 80)/(8000* 2.5* 10^(-3) \time 570) = 0.007018 s^(-1)](https://img.qammunity.org/2020/formulas/physics/college/rlx50sgxvx0fb5ayy6euknvz4w5hm2wihw.png)
![t = ((3)/(2))/(0.01) = 150 s](https://img.qammunity.org/2020/formulas/physics/college/hxjid1aiqr4ms7fyevj1ztfn9o8whqdvjv.png)
considerig temperature distiribution
temperature at mid length of furnase is
![(T(t) -T_(\infity))/(20 - T_(\infity)) =E^(-bt)](https://img.qammunity.org/2020/formulas/physics/college/8hd9wn4fayun00syko9fhpk8gojbgn57ph.png)
![(T(t) -900)/(20 - 900) =E^(-0.007018* 150)](https://img.qammunity.org/2020/formulas/physics/college/q2bo50eaf5mwxv1h4atrx9j02rm7hrvurb.png)
T(t) = 592.885 degree c
from Newton's law of cooling determine temp gradient at surface at t = 150 s
![-k (\partial T(t))/(\partial y) \at\ y = 0 is h[T(t) -T_(\infity)]](https://img.qammunity.org/2020/formulas/physics/college/j790usybhhc6rt200uu7qn0idbx76jggr3.png)
![(\partial T(t))/(\partial y) \ at\ y = 0 is (h[T(t) -T_(\infity)])/(k)](https://img.qammunity.org/2020/formulas/physics/college/io5r5vigqzanapwagk0wyy4mysf3vagnpw.png)
![(\partial T(t))/(\partial y)\ at\ y = 0 is ( 80[592.885 - 900])/(21)](https://img.qammunity.org/2020/formulas/physics/college/qi4g05vaik3e4sj7d76gxk9m9ku4ci3k8i.png)
![(\partial T(t))/(\partial y) at\ y = 0\ is \ 1170 K/m](https://img.qammunity.org/2020/formulas/physics/college/f0w53zhrkxh91moddtrrbkgpdfwldelto6.png)