Answer:
The Sum of the Expression
is
![(6x^3+2x^2+5x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f721mz39f13k6g7vixydp918lhbuwrwgxf.png)
Explanation:
Given :
![(4x^3-3x+2x^3)+(2x-2x^2+6x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gkjvdty61pl2ail0tj2vgydemirvqmpoec.png)
Now we will use the BODMAS method Which has a rule to use it and this rule states that if any equation has bracket, off, Divide ,Multiply , addition and subtraction signs then we will solve first Bracket then Off then Division then Multiplication then Addition and at last subtraction.
So,
Sum=
![(4x^3-3x+2x^3)+(2x-2x^2+6x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gkjvdty61pl2ail0tj2vgydemirvqmpoec.png)
Sum=
![(6x^3-3x)+(-2x^2+8x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ifgg1hz05pb8oc96whgjlu753cmjjddbq5.png)
Sum=
![(6x^3-3x-2x^2+8x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dzh4giss5hk6t58cydcpbzvdolsi14aewz.png)
Sum=
![(6x^3-2x^2+5x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tn2xf94wgqkzcws08bnfiixlkpciczzqmw.png)
Hence the Sum of the above Expression is
![(6x^3-2x^2+5x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tn2xf94wgqkzcws08bnfiixlkpciczzqmw.png)