Answer:
= 1220 nm
= 1.22 μm
Step-by-step explanation:
given data:
wavelength
![\lambda = 610 nm = 610* 10 ^(-9) m](https://img.qammunity.org/2020/formulas/physics/high-school/w3gyjowalrvxvqdye3axup5dr9ugx8n4ml.png)
distance of screen from slits D = 3 m
1st order bright fringe is 4.84 mm
condition for 1 st bright is
---( 1)
and
![tan \theta = (y)/( D)](https://img.qammunity.org/2020/formulas/physics/high-school/vl3vyqcxp5kn9oys9gx8f0ok5u8i1kbpbe.png)
![\theta = tan^(-1)((y )/(D))](https://img.qammunity.org/2020/formulas/physics/high-school/mbx5ag79eb154xehkfph20c3xjhxy8xc3h.png)
= 0.0924 degrees
plug theta value in equation 1 we get
![d sin ( 0.0924) = 610 * 10 ^(-9)](https://img.qammunity.org/2020/formulas/physics/high-school/un253fgbrxh5uhfxrgojzpi3mmxv59neje.png)
![d = 3.78* 10^(-4) m](https://img.qammunity.org/2020/formulas/physics/high-school/kugtg9w96y58maiqe51jcwoxnu5aujiqyn.png)
condition for 1 st dark fringe
![<strong> d sin \theta =(λ')/(2)</strong>](https://img.qammunity.org/2020/formulas/physics/high-school/qfxj1whopwjbiwztsbko3p6x78gnw68mr9.png)
![\lambda '= 2 d sin\theta](https://img.qammunity.org/2020/formulas/physics/high-school/5itdi4z8v7zx8h5r4rbmvf93isgfewp779.png)
= 2λ since from eq (1)
= 1220 nm
= 1.22 μm