244,855 views
29 votes
29 votes
Solve for X


\log _ { 3 } x = 9 \log _ { x } 3
pls gv step by step explaination​

User Chanaka Amarasinghe
by
2.5k points

2 Answers

17 votes
17 votes

Answer: x=3 x=1/27

Explanation:


log_3x=9log_x3\\

The area of acceptable values:


x > 0\ \ \ \ x\\eq 1\\Hence,\\x\in(0,1)U(1,+\infty)

Solution:


\displaystyle\\log_3x=(9)/(log_3x) \ \ \ \ \ \boxed{ log_ab=(1)/(log_ba) }\\\\Multiply\ both\ parts\ of\ the\ equation\ by\ log_3x :\\\\log^2_3x=9\\log^2_3x=3^2\\ log_3x=б3\\\\log_3x=3\\\\x=3^3\\x=3*3*3\\x=27\\\\\\log_3x=-3\\x=3^(-3)\\\displaystyle\\x=((1)/(3))^3\\ x=(1)/(3)*(1)/(3)*(1)/(3) \\ x=(1)/(27)

User Rcnespoli
by
3.1k points
16 votes
16 votes

Answer:


x=27, \quad x= (1)/(27)

Explanation:


\boxed{\begin{minipage}{3.7 cm}\underline{Logs Laws}\\\\$\log_ba=(\log_ca)/(\log_cb)$\\\\\\$\log_ab=c \iff a^c=b$\\\end{minipage}}

Given equation:


\log_3x=9\log_x3

Change the base of 9logₓ3 to base 3:


\begin{aligned}\implies \log_3x & =9\log_x3\\\\& =(9\log_33)/(\log_3x)\\\\&=(9(1))/(\log_3x)\\\\&=(9)/(\log_3x)\end{aligned}

Therefore:


\implies \log_3x=(9)/(\log_3x)


\textsf{Let }\log_3x=u:


\implies u=(9)/(u)


\implies u^2=9


\implies u=\pm3


\textsf{Substitute back in }u=\log_3x:


\implies \log_3x=\pm3

Case 1


\implies \log_3x=3


\implies 3^3=x


\implies x=27

Case 2


\implies \log_3x=-3


\implies 3^(-3)=x


\implies (1)/(3^3)=x


\implies x=(1)/(27)

User Kamal Palei
by
2.7k points