102k views
1 vote
Find the circumcenter of the triangle ABC A(-8,5) B(-6,7) C(-8,7)

User Dirk Jan
by
7.8k points

1 Answer

1 vote

Answer:

(-7,6)

Explanation:

The vertices of a triangle ABC are A(-8,5) B(-6,7) C(-8,7).

Distance formula:


D=√((x_2-x_1)^2+(y_2-y_1)^2)

Using distance formula we get


a=BC=√(\left(-8-\left(-6\right)\right)^2+\left(7-7\right)^2)=2


b=AC=√(\left(-8-\left(-8\right)\right)^2+\left(7-5\right)^2)=2


c=AB=√(\left(-6-\left(-8\right)\right)^2+\left(7-5\right)^2)=2√(2)

Using these sides, we get


AB^2=(2√(2))^2=8


BC^2+AC^2=2^2+2^2=8

Since
AB^2=BC^2+AC^2, therefore triangle ABC is a right angled triangle.

Circumcenter of a right angled triangle is the midpoint of hypotenuse.

In triangle ABC, side AB is hypotenuse. So, circumcenter of the triangle ABC is the midpoint of AB.


Circumcenter=((x_1+x_2)/(2), (y_1+y_2)/(2))


Circumcenter=((-8-6)/(2), (5+7)/(2))


Circumcenter=((-14)/(2), (12)/(2))


Circumcenter=(-7,6)

Therefore, the circumcenter of the triangle ABC is (-7,6).

Find the circumcenter of the triangle ABC A(-8,5) B(-6,7) C(-8,7)-example-1
User Paul Sturgess
by
8.4k points

No related questions found