Answer:
The value of x = 1
Explanation:
Given
To determine
x = ?
Using the trigonometric ratio
cos Ф = adjacent / hypotenuse
here
Ф = 45°
adjacent of 45° = x
hypotenuse = √2
so substituting Ф = 45° adjacent = x and hypotenuse = √2 in the equation
cos Ф = adjacent / hypotenuse
![\cos \left(45^(\circ \:)\right)=(x)/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/4tscv7ccl3fib4mao6b1uqby0toq1fs31r.png)
switch sides
![(x)/(√(2))=\cos \left(45^(\circ \:)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o004mgwatwsa5ct8iqckui66ne8980n8gn.png)
Multiply both sides by 2
![(2x)/(√(2))=2\cos \left(45^(\circ \:)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/88c41oxtrfnbugv2zhuimdl7ufmlh9zth4.png)
∵
![\cos \left(45^(\circ \:)\right)=(√(2))/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ovwp5ut82qcujvqxbhm9pxp06a7vb8nccq.png)
Divide both sides by √2
![(√(2)x)/(√(2))=(√(2))/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/zm0urglra8icdw63vz1bc5gg4koaxcyzc6.png)
![x=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/x1mtktx3ckqtr9c9bhuvh92xozouexxxze.png)
Therefore, the value of x = 1